3.179 \(\int \frac{\tan ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=205 \[ \frac{(-B+i A) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}+\frac{(-1)^{3/4} (-B+2 i A) \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}-\frac{(A+2 i B) \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{\left (\frac{1}{2}-\frac{i}{2}\right ) (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

[Out]

((-1)^(3/4)*((2*I)*A - B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]
*d) - ((1/2 - I/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a
]*d) + ((I*A - B)*Tan[c + d*x]^(3/2))/(d*Sqrt[a + I*a*Tan[c + d*x]]) - ((A + (2*I)*B)*Sqrt[Tan[c + d*x]]*Sqrt[
a + I*a*Tan[c + d*x]])/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.690517, antiderivative size = 205, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.237, Rules used = {3595, 3597, 3601, 3544, 205, 3599, 63, 217, 203} \[ \frac{(-B+i A) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}+\frac{(-1)^{3/4} (-B+2 i A) \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}-\frac{(A+2 i B) \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{\left (\frac{1}{2}-\frac{i}{2}\right ) (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-1)^(3/4)*((2*I)*A - B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]
*d) - ((1/2 - I/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a
]*d) + ((I*A - B)*Tan[c + d*x]^(3/2))/(d*Sqrt[a + I*a*Tan[c + d*x]]) - ((A + (2*I)*B)*Sqrt[Tan[c + d*x]]*Sqrt[
a + I*a*Tan[c + d*x]])/(a*d)

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3597

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(f*(m + n)), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt{a+i a \tan (c+d x)}} \, dx &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{\int \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)} \left (\frac{3}{2} a (i A-B)+a (A+2 i B) \tan (c+d x)\right ) \, dx}{a^2}\\ &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(A+2 i B) \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{\int \frac{\sqrt{a+i a \tan (c+d x)} \left (-\frac{1}{2} a^2 (A+2 i B)+\frac{1}{2} a^2 (2 i A-B) \tan (c+d x)\right )}{\sqrt{\tan (c+d x)}} \, dx}{a^3}\\ &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(A+2 i B) \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{(A-i B) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{2 a}+\frac{(2 A+i B) \int \frac{(a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{2 a^2}\\ &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(A+2 i B) \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{a d}+\frac{(2 A+i B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac{(a (i A+B)) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(A+2 i B) \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{a d}+\frac{(2 A+i B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(A+2 i B) \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{a d}+\frac{(2 A+i B) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt [4]{-1} (2 A+i B) \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}+\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(A+2 i B) \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{a d}\\ \end{align*}

Mathematica [A]  time = 4.77915, size = 277, normalized size = 1.35 \[ \frac{(A+B \tan (c+d x)) \left (\frac{\sqrt{2} \sqrt{-1+e^{2 i (c+d x)}} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left ((B+i A) \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )+\sqrt{2} (B-2 i A) \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{\sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \sqrt{\sec (c+d x)}}-2 \sqrt{\tan (c+d x)} (-B \sin (c+d x)+(A+2 i B) \cos (c+d x))\right )}{2 d \sqrt{a+i a \tan (c+d x)} (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(((Sqrt[2]*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*((I*A + B)*ArcTanh[E
^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]] + Sqrt[2]*((-2*I)*A + B)*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt
[-1 + E^((2*I)*(c + d*x))]]))/(Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[Sec[c +
d*x]]) - 2*((A + (2*I)*B)*Cos[c + d*x] - B*Sin[c + d*x])*Sqrt[Tan[c + d*x]])*(A + B*Tan[c + d*x]))/(2*d*(A*Cos
[c + d*x] + B*Sin[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.101, size = 1141, normalized size = 5.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

1/4/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*(8*I*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I
*a)^(1/2)-4*I*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-2*I*B*ln(1/2*(2*I*
a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+I*A*(I*a)^(1/2
)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I
))*tan(d*x+c)^2*a+B*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a
-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a-I*A*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*
x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+2*I*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x
+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^2*a-8*I*A*ln(1/2*(2*I*a*tan(d*
x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)*a+2*A*(I*a)^(
1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c
)+I))*tan(d*x+c)*a+4*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(
1/2))*(-I*a)^(1/2)*tan(d*x+c)^2*a+4*I*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x
+c)-2*I*B*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d
*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a-B*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(
d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+4*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x
+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)*a-12*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*
(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)-4*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^
(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+4*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*(I*a)^(1/2))/a/(a*
tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^2/(I*a)^(1/2)/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 3.03536, size = 2268, normalized size = 11.06 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/4*(a*d*sqrt((-2*I*A^2 - 4*A*B + 2*I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a*d*sqrt((-2*I*A^2 - 4*A*B + 2
*I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x +
2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4
*I*A + 4*B)) - a*d*sqrt((-2*I*A^2 - 4*A*B + 2*I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c)*log((-I*a*d*sqrt((-2*I*A^2 -
 4*A*B + 2*I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(
2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x
 - I*c)/(4*I*A + 4*B)) + a*d*sqrt((-4*I*A^2 + 4*A*B + I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c)*log((sqrt(2)*((-416*
I*A + 208*B)*e^(2*I*d*x + 2*I*c) - 416*I*A + 208*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*
I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + (312*I*a*d*e^(2*I*d*x + 2*I*c) - 104*I*a*d)*sqrt((-4*I*
A^2 + 4*A*B + I*B^2)/(a*d^2)))/((-1210*I*A + 605*B)*e^(2*I*d*x + 2*I*c) - 1210*I*A + 605*B)) - a*d*sqrt((-4*I*
A^2 + 4*A*B + I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c)*log((sqrt(2)*((-416*I*A + 208*B)*e^(2*I*d*x + 2*I*c) - 416*I
*A + 208*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(
I*d*x + I*c) + (-312*I*a*d*e^(2*I*d*x + 2*I*c) + 104*I*a*d)*sqrt((-4*I*A^2 + 4*A*B + I*B^2)/(a*d^2)))/((-1210*
I*A + 605*B)*e^(2*I*d*x + 2*I*c) - 1210*I*A + 605*B)) + 2*sqrt(2)*((A + 3*I*B)*e^(2*I*d*x + 2*I*c) + A + I*B)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c)
)*e^(-2*I*d*x - 2*I*c)/(a*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError